Industrial Internet of Things (I-IoT) is a collaboration of devices, sensors, and networking equipment to monitor and collect data from industrial operations. Machine learning (ML) methods use this data to make high-level decisions with minimal human intervention. Data-driven predictive maintenance (PDM) is a crucial ML-based I-IoT application to find an optimal maintenance schedule for industrial assets. The performance of these ML methods can seriously be threatened by adversarial attacks where an adversary crafts perturbed data and sends it to the ML model to deteriorate its prediction performance. The models should be able to stay robust against these attacks where robustness is measured by how much perturbation in input data affects model performance. Hence, there is a need for effective defense mechanisms that can protect these models against adversarial attacks. In this work, we propose a double defense mechanism to detect and mitigate adversarial attacks in I-IoT environments. We first detect if there is an adversarial attack on a given sample using novelty detection algorithms. Then, based on the outcome of our algorithm, marking an instance as attack or normal, we select adversarial retraining or standard training to provide a secondary defense layer. If there is an attack, adversarial retraining provides a more robust model, while we apply standard training for regular samples. Since we may not know if an attack will take place, our adaptive mechanism allows us to consider irregular changes in data. The results show that our double defense strategy is highly efficient where we can improve model robustness by up to 64.6% and 52% compared to standard and adversarial retraining, respectively.