When people think of everyday things like an "egg," they typically have a mental image associated with it. This commonsense knowledge helps us understand how these everyday things work and how to interact with them. For example, when someone tries to make a fried egg, they know that it has a shell and that it can be cracked open to reveal the egg white and yolk inside. However, if a system does not have a coherent picture of such everyday things, thinking that the egg yolk surrounds the shell, then it might have to resort to ridiculous approaches such as trying to scrape the egg yolk off the shell into the pan. Do language models have a coherent picture of such everyday things? To investigate this, we propose a benchmark dataset consisting of 100 everyday things, their parts, and the relationships between these parts. We observe that state-of-the-art pre-trained language models (LMs) like GPT-3 and Macaw have fragments of knowledge about these entities, but they fail to produce consistent parts mental models. We propose a simple extension to these LMs where we apply a constraint satisfaction layer on top of raw predictions from LMs to produce more consistent and accurate parts mental models of everyday things.