This paper presents a Visual Inertial Odometry Landmark-based Simultaneous Localisation and Mapping algorithm based on a distributed block coordinate nonlinear Moving Horizon Estimation scheme. The main advantage of the proposed method is that the updates on the position of the landmarks are based on a Bundle Adjustment technique that can be parallelised over the landmarks. The performance of the method is demonstrated in simulations in different environments and with different types of robot trajectory. Circular and wiggling patterns in the trajectory lead to better estimation performance than straight ones, confirming what is expected from recent nonlinear observability theory.