Recent progress of deep learning has empowered various intelligent transportation applications, especially in car-sharing platforms. While the traditional operations of the car-sharing service highly relied on human engagements in fleet management, modern car-sharing platforms let users upload car images before and after their use to inspect the cars without a physical visit. To automate the aforementioned inspection task, prior approaches utilized deep neural networks. They commonly employed pre-training, a de-facto technique to establish an effective model under the limited number of labeled datasets. As candidate practitioners who deal with car images would presumably get suffered from the lack of a labeled dataset, we analyzed a sophisticated analogy into the effectiveness of pre-training is important. However, prior studies primarily shed a little spotlight on the effectiveness of pre-training. Motivated by the aforementioned lack of analysis, our study proposes a series of analyses to unveil the effectiveness of various pre-training methods in image recognition tasks at the car-sharing platform. We set two real-world image recognition tasks in the car-sharing platform in a live service, established them under the many-shot and few-shot problem settings, and scrutinized which pre-training method accomplishes the most effective performance in which setting. Furthermore, we analyzed how does the pre-training and fine-tuning convey different knowledge to the neural networks for a precise understanding.