In the realm of computational physics, an enduring topic is the numerical solutions to partial differential equations (PDEs). Recently, the attention of researchers has shifted towards Neural Operator methods, renowned for their capability to approximate ``operators'' -- mappings from functions to functions. Despite the universal approximation theorem within neural operators, ensuring error bounds often requires employing numerous Fourier layers. However, what about lightweight models? In response to this question, we introduce DimOL (Dimension-aware Operator Learning), drawing insights from dimensional analysis. To implement DimOL, we propose the ProdLayer, which can be seamlessly integrated into FNO-based and Transformer-based PDE solvers, enhancing their ability to handle sum-of-products structures inherent in many physical systems. Empirically, DimOL models achieve up to 48% performance gain within the PDE datasets. Furthermore, by analyzing Fourier components' weights, we can symbolically discern the physical significance of each term. This sheds light on the opaque nature of neural networks, unveiling underlying physical principles.