Fuzzy time series forecasting (FTSF) is a typical forecasting method with wide application. Traditional FTSF is regarded as an expert system which leads to lose the ability to recognize undefined feature. The mentioned is main reason of poor forecasting with FTSF. To solve the problem, the proposed model Differential Fuzzy Convolutional Neural Network (DFCNN) utilizes convolution neural network to re-implement FTSF with learnable ability. DFCNN is capable of recognizing the potential information and improve the forecasting accuracy. Thanks to learnable ability of neural network, length of fuzzy rules established in FTSF is expended to arbitrary length which expert is not able to be handle by expert system. At the same time, FTSF usually cannot achieve satisfactory performance of non-stationary time series due to trend of non-stationary time series. The trend of non-stationary time series causes the fuzzy set established by FTSF to invalid and cause the forecasting to fail. DFCNN utilizes the Difference algorithm to weaken the non-stationarity of time series, so that DFCNN can forecast the non-stationary time series with low error that FTSF cannot forecast in satisfactory performance. After mass of experiments, DFCNN has excellent prediction effect, which is ahead of the existing FTSF and common time series forecasting algorithms. Finally, DFCNN provides further ideas for improving FTSF and holds continued research value.