This paper provides a solution for the activity detection and channel estimation problem in grant-free access with correlated device activity patterns. In particular, we consider a machine-type communications (MTC) network operating in event-triggered traffic mode, where the devices are distributed over clusters with an activity behaviour that exhibits both intra-cluster and inner-cluster sparsity patterns. Furthermore, to model the network's intra-cluster and inner-cluster sparsity, we propose a structured sparsity-inducing spike-and-slab prior which provides a flexible approach to encode the prior information about the correlated sparse activity pattern. Furthermore, we drive a Bayesian inference scheme based on the expectation propagation (EP) framework to solve the JUICE problem. Numerical results highlight the significant gains obtained by the proposed structured sparsity-inducing spike-and-slab prior in terms of both user identification accuracy and channel estimation performance.