This paper introduces the Minimal Biorobotic Stealth Distance (MBSD), a novel quantitative metric to evaluate the bionic resemblance of biorobotic aircraft. Current technological limitations prevent dragonfly-inspired aircrafts from achieving optimal performance at biological scales. To address these challenges, we use the DDD-1 dragonfly-inspired aircraft, a hover-capable direct-drive aircraft, to explore the impact of the MBSD on aircraft design. Key contributions of this research include: (1) the establishment of the MBSD as a quantifiable and operable evaluation metric that influences aircraft design, integrating seamlessly with the overall design process and providing a new dimension for optimizing bionic aircraft, balancing mechanical attributes and bionic characteristics; (2) the creation and analysis of a typical aircraft in four directions: essential characteristics of the MBSD, its coupling relationship with existing performance metrics (Longest Hover Duration and Maximum Instantaneous Forward Flight Speed), multi-objective optimization, and application in a typical mission scenario; (3) the construction and validation of a full-system model for the direct-drive dragonfly-inspired aircraft, demonstrating the design model's effectiveness against existing aircraft data. Detailed calculations of the MBSD consider appearance similarity, dynamic similarity, and environmental similarity.