Trailer parking is a challenging task due to the unstable nature of the vehicle-trailer system in reverse motion and the unintuitive steering actions required at the vehicle to accomplish the parking maneuver. This paper presents a strategy to tackle this kind of maneuver with an advisory graphic aid to help the human driver with the task of manually backing up the vehicle-trailer system. A kinematic vehicle-trailer model is derived to describe the low-speed motion of the vehicle-trailer system, and its inverse kinematics is established by generating an equivalent virtual trailer axle steering command. The advisory system graphics is generated based on the inverse kinematics and displays the expected trailer orientation given the current vehicle steer angle and configuration (hitch angle). Simulation study and animation are set up to test the efficacy of the approach, where the user can select both vehicle speed and vehicle steering angle freely, which allows the user to stop the vehicle-trailer system and experiment with different steering inputs to see their effect on the predicted trailer motion before proceeding with the best one according to the advisory graphics, hence creating a series of piecewise continuous control actions similar to how manual trailer reverse parking is usually carried out. The advisory graphics proves to provide the driver with an intuitive understanding of the trailer motion at any given configuration (hitch angle).