Astronomical images provide information about the great variety of cosmic objects in the Universe. Due to the large volumes of data, the presence of innumerable bright point sources as well as noise within the frame and the spatial gap between objects and satellite cameras, it is a challenging task to classify and detect the celestial objects. We propose an Adaptive Thresholding Method (ATM) based segmentation and Back Propagation Neural Network (BPNN) based cosmic object detection including a well-structured series of pre-processing steps designed to enhance segmentation and detection.