This paper explores the problem of sockpuppet detection in deceptive opinion spam using authorship attribution and verification approaches. Two methods are explored. The first is a feature subsampling scheme that uses the KL-Divergence on stylistic language models of an author to find discriminative features. The second is a transduction scheme, spy induction that leverages the diversity of authors in the unlabeled test set by sending a set of spies (positive samples) from the training set to retrieve hidden samples in the unlabeled test set using nearest and farthest neighbors. Experiments using ground truth sockpuppet data show the effectiveness of the proposed schemes.