Large language models (LLMs) have drastically changed the possible ways to design intelligent systems, shifting the focuses from massive data acquisition and new modeling training to human alignment and strategical elicitation of the full potential of existing pre-trained models. This paradigm shift, however, is not fully realized in financial sentiment analysis (FSA), due to the discriminative nature of this task and a lack of prescriptive knowledge of how to leverage generative models in such a context. This study investigates the effectiveness of the new paradigm, i.e., using LLMs without fine-tuning for FSA. Rooted in Minsky's theory of mind and emotions, a design framework with heterogeneous LLM agents is proposed. The framework instantiates specialized agents using prior domain knowledge of the types of FSA errors and reasons on the aggregated agent discussions. Comprehensive evaluation on FSA datasets show that the framework yields better accuracies, especially when the discussions are substantial. This study contributes to the design foundations and paves new avenues for LLMs-based FSA. Implications on business and management are also discussed.