We derive explicit equations governing the cumulative biases and weights in Deep Learning with ReLU activation function, based on gradient descent for the Euclidean cost in the input layer, and under the assumption that the weights are, in a precise sense, adapted to the coordinate system distinguished by the activations. We show that gradient descent corresponds to a dynamical process in the input layer, whereby clusters of data are progressively reduced in complexity ("truncated") at an exponential rate that increases with the number of data points that have already been truncated. We provide a detailed discussion of several types of solutions to the gradient flow equations. A main motivation for this work is to shed light on the interpretability question in supervised learning.