Single image dehazing is a challenging ill-posed problem. Existing datasets for training deep learning-based methods can be generated by hand-crafted or synthetic schemes. However, the former often suffers from small scales, while the latter forces models to learn scene depth instead of haze distribution, decreasing their dehazing ability. To overcome the problem, we propose a simple yet novel synthetic method to decouple the relationship between haze density and scene depth, by which a depth-agnostic dataset (DA-HAZE) is generated. Meanwhile, a Global Shuffle Strategy (GSS) is proposed for generating differently scaled datasets, thereby enhancing the generalization ability of the model. Extensive experiments indicate that models trained on DA-HAZE achieve significant improvements on real-world benchmarks, with less discrepancy between SOTS and DA-SOTS (the test set of DA-HAZE). Additionally, Depth-agnostic dehazing is a more complicated task because of the lack of depth prior. Therefore, an efficient architecture with stronger feature modeling ability and fewer computational costs is necessary. We revisit the U-Net-based architectures for dehazing, in which dedicatedly designed blocks are incorporated. However, the performances of blocks are constrained by limited feature fusion methods. To this end, we propose a Convolutional Skip Connection (CSC) module, allowing vanilla feature fusion methods to achieve promising results with minimal costs. Extensive experimental results demonstrate that current state-of-the-art methods. equipped with CSC can achieve better performance and reasonable computational expense, whether the haze distribution is relevant to the scene depth.