Many scientific fields -- including biology, health, education, and the social sciences -- use machine learning (ML) to help them analyze data at an unprecedented scale. However, ML researchers who develop advanced methods rarely provide detailed tutorials showing how to apply these methods. Existing tutorials are often costly to participants, presume extensive programming knowledge, and are not tailored to specific application fields. In an attempt to democratize ML methods, we organized a year-long, free, online tutorial series targeted at teaching advanced natural language processing (NLP) methods to computational social science (CSS) scholars. Two organizers worked with fifteen subject matter experts to develop one-hour presentations with hands-on Python code for a range of ML methods and use cases, from data pre-processing to analyzing temporal variation of language change. Although live participation was more limited than expected, a comparison of pre- and post-tutorial surveys showed an increase in participants' perceived knowledge of almost one point on a 7-point Likert scale. Furthermore, participants asked thoughtful questions during tutorials and engaged readily with tutorial content afterwards, as demonstrated by 10K~total views of posted tutorial recordings. In this report, we summarize our organizational efforts and distill five principles for democratizing ML+X tutorials. We hope future organizers improve upon these principles and continue to lower barriers to developing ML skills for researchers of all fields.