In today's era, users have increasingly high expectations regarding the performance and efficiency of communication networks. Network operators aspire to achieve efficient network planning, operation, and optimization through Digital Twin Networks (DTN). The effectiveness of DTN heavily relies on the network model, with graph neural networks (GNN) playing a crucial role in network modeling. However, existing network modeling methods still lack a comprehensive understanding of communication networks. In this paper, we propose DWNet (Deeper and Wider Networks), a heterogeneous graph neural network modeling method based on data-driven approaches that aims to address end-to-end latency and jitter prediction in network models. This method stands out due to two distinctive features: firstly, it introduces deeper levels of state participation in the message passing process; secondly, it extensively integrates relevant features during the feature fusion process. Through experimental validation and evaluation, our model achieves higher prediction accuracy compared to previous research achievements, particularly when dealing with unseen network topologies during model training. Our model not only provides more accurate predictions but also demonstrates stronger generalization capabilities across diverse topological structures.