We use decision trees to build a helpdesk agent reference network to facilitate the on-the-job advising of junior or less experienced staff on how to better address telecommunication customer fault reports. Such reports generate field measurements and remote measurements which, when coupled with location data and client attributes, and fused with organization-level statistics, can produce models of how support should be provided. Beyond decision support, these models can help identify staff who can act as advisors, based on the quality, consistency and predictability of dealing with complex troubleshooting reports. Advisor staff models are then used to guide less experienced staff in their decision making; thus, we advocate the deployment of a simple mechanism which exploits the availability of staff with a sound track record at the helpdesk to act as dormant tutors.