To reap the benefits of reconfigurable intelligent surfaces (RIS), channel state information (CSI) is generally required. However, CSI acquisition in RIS systems is challenging and often results in very large pilot overhead, especially in unstructured channel environments. Consequently, the RIS channel estimation problem has attracted a lot of interest and also been a subject of intense study in recent years. In this paper, we propose a decision-directed RIS channel estimation framework for general unstructured channel models. The employed RIS contains some hybrid elements that can simultaneously reflect and sense the incoming signal. We show that with the help of the hybrid RIS elements, it is possible to accurately recover the CSI with a pilot overhead proportional to the number of users. Therefore, the proposed framework substantially improves the system spectral efficiency compared to systems with passive RIS arrays since the pilot overhead in passive RIS systems is proportional to the number of RIS elements times the number of users. We also perform a detailed spectral efficiency analysis for both the pilot-directed and decision-directed frameworks. Our analysis takes into account both the channel estimation and data detection errors at both the RIS and the BS. Finally, we present numerous simulation results to verify the accuracy of the analysis as well as to show the benefits of the proposed decision-directed framework.