The proliferation of Low Earth Orbit (LEO) satellite constellations has intensified the challenge of space debris management. This paper introduces DebriSense-THz, a novel Terahertz-Enabled Debris Sensing system for LEO satellites that leverages Integrated Sensing and Communications (ISAC) technology. We present a comprehensive THz channel model for LEO environments, incorporating debris interactions such as reflection, scattering, and diffraction. The DebriSense-THz architecture employs machine learning techniques for debris detection and classification using Channel State Information (CSI) features. Performance evaluation across different frequencies (30 GHz-5 THz), MIMO configurations, debris densities, and SNR levels demonstrates significant improvements in debris detection and classification accuracy (95-99% at 5 THz compared to 62-81% at 30 GHz). Higher SNR configurations enhance sensing performance, particularly at higher frequencies. The system shows robust performance across various debris densities and MIMO size in the THz range, with a noted trade-off between communication reliability and sensing accuracy at lower frequencies. DebriSense-THz represents a significant advance in space situational awareness, paving the way for more effective debris mitigation strategies in increasingly congested LEO environments.