Identification of experimentally acquired mass spectra of unknown compounds presents a~particular challenge because reliable spectral databases do not cover the potential chemical space with sufficient density. Therefore machine learning based \emph{de-novo} methods, which derive molecular structure directly from its mass spectrum gained attention recently. We present a~novel method in this family, addressing a~specific usecase of GC-EI-MS spectra, which is particularly hard due to lack of additional information from the first stage of MS/MS experiments, on which the previously published methods rely. We analyze strengths and drawbacks or our approach and discuss future directions.