The recruitment of new personnel is one of the most essential business processes which affect the quality of human capital within any company. It is highly essential for the companies to ensure the recruitment of right talent to maintain a competitive edge over the others in the market. However IT companies often face a problem while recruiting new people for their ongoing projects due to lack of a proper framework that defines a criteria for the selection process. In this paper we aim to develop a framework that would allow any project manager to take the right decision for selecting new talent by correlating performance parameters with the other domain-specific attributes of the candidates. Also, another important motivation behind this project is to check the validity of the selection procedure often followed by various big companies in both public and private sectors which focus only on academic scores, GPA/grades of students from colleges and other academic backgrounds. We test if such a decision will produce optimal results in the industry or is there a need for change that offers a more holistic approach to recruitment of new talent in the software companies. The scope of this work extends beyond the IT domain and a similar procedure can be adopted to develop a recruitment framework in other fields as well. Data-mining techniques provide useful information from the historical projects depending on which the hiring-manager can make decisions for recruiting high-quality workforce. This study aims to bridge this hiatus by developing a data-mining framework based on an ensemble-learning technique to refocus on the criteria for personnel selection. The results from this research clearly demonstrated that there is a need to refocus on the selection-criteria for quality objectives.