Decentralized optimization algorithms have attracted intensive interests recently, as it has a balanced communication pattern, especially when solving large-scale machine learning problems. Stochastic Path Integrated Differential Estimator Stochastic First-Order method (SPIDER-SFO) nearly achieves the algorithmic lower bound in certain regimes for nonconvex problems. However, whether we can find a decentralized algorithm which achieves a similar convergence rate to SPIDER-SFO is still unclear. To tackle this problem, we propose a decentralized variant of SPIDER-SFO, called decentralized SPIDER-SFO (D-SPIDER-SFO). We show that D-SPIDER-SFO achieves a similar gradient computation cost---that is, $\mathcal{O}(\epsilon^{-3})$ for finding an $\epsilon$-approximate first-order stationary point---to its centralized counterpart. To the best of our knowledge, D-SPIDER-SFO achieves the state-of-the-art performance for solving nonconvex optimization problems on decentralized networks in terms of the computational cost. Experiments on different network configurations demonstrate the efficiency of the proposed method.