Human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) are a powerful tool in advancing cardiovascular research and clinical applications. The maturation of sarcomere organization in hiPSC-CMs is crucial, as it supports the contractile function and structural integrity of these cells. Traditional methods for assessing this maturation like manual annotation and feature extraction are labor-intensive, time-consuming, and unsuitable for high-throughput analysis. To address this, we propose D-SarcNet, a dual-stream deep learning framework that takes fluorescent hiPSC-CM single-cell images as input and outputs the stage of the sarcomere structural organization on a scale from 1.0 to 5.0. The framework also integrates Fast Fourier Transform (FFT), deep learning-generated local patterns, and gradient magnitude to capture detailed structural information at both global and local levels. Experiments on a publicly available dataset from the Allen Institute for Cell Science show that the proposed approach not only achieves a Spearman correlation of 0.868 marking a 3.7% improvement over the previous state-of-the-art but also significantly enhances other key performance metrics, including MSE, MAE, and R2 score. Beyond establishing a new state-of-the-art in sarcomere structure assessment from hiPSC-CM images, our ablation studies highlight the significance of integrating global and local information to enhance deep learning networks ability to discern and learn vital visual features of sarcomere structure.