We describe a formulation of multi-agents operating within a Cyber-Physical System, resulting in collaborative or adversarial games. We show that the non-determinism inherent in the communication medium between agents and the underlying physical environment gives rise to environment evolution that is a probabilistic function of agents' strategies. We name these emergent properties Cyber Physical Games and study its properties. We present an algorithmic model that determines the most likely system evolution, approximating Cyber Physical Games through Probabilistic Finite State Automata, and evaluate it on collaborative and adversarial versions of the Iterated Boolean Game, comparing theoretical results with simulated ones. Results support the validity of the proposed model, and suggest several required research directions to continue evolving our understanding of Cyber Physical System, as well as how to best design agents that must operate within such environments.