In this paper, we propose a new pre-training method for image understanding tasks under Curriculum Learning (CL) paradigm which leverages RGB-D. The method utilizes Multi-Modal Contrastive Masked Autoencoder and Denoising techniques. Recent approaches either use masked autoencoding (e.g., MultiMAE) or contrastive learning(e.g., Pri3D, or combine them in a single contrastive masked autoencoder architecture such as CMAE and CAV-MAE. However, none of the single contrastive masked autoencoder is applicable to RGB-D datasets. To improve the performance and efficacy of such methods, we propose a new pre-training strategy based on CL. Specifically, in the first stage, we pre-train the model using contrastive learning to learn cross-modal representations. In the second stage, we initialize the modality-specific encoders using the weights from the first stage and then pre-train the model using masked autoencoding and denoising/noise prediction used in diffusion models. Masked autoencoding focuses on reconstructing the missing patches in the input modality using local spatial correlations, while denoising learns high frequency components of the input data. Our approach is scalable, robust and suitable for pre-training with limited RGB-D datasets. Extensive experiments on multiple datasets such as ScanNet, NYUv2 and SUN RGB-D show the efficacy and superior performance of our approach. Specifically, we show an improvement of +1.0% mIoU against Mask3D on ScanNet semantic segmentation. We further demonstrate the effectiveness of our approach in low-data regime by evaluating it for semantic segmentation task against the state-of-the-art methods.