https://riyasamanta.github.io/krew.html, is freely accessible to both the general public and the research community.
Conditional Tabular Generative Adversarial Networks (CTGAN) and their various derivatives are attractive for their ability to efficiently and flexibly create synthetic tabular data, showcasing strong performance and adaptability. However, there are certain critical limitations to such models. The first is their inability to preserve the semantic integrity of contextually correlated words or phrases. For instance, skillset in freelancer profiles is one such attribute where individual skills are semantically interconnected and indicative of specific domain interests or qualifications. The second challenge of traditional approaches is that, when applied to generate contextually correlated tabular content, besides generating semantically shallow content, they consume huge memory resources and CPU time during the training stage. To address these problems, we introduce a novel framework, CTGKrEW (Conditional Tabular GAN with KMeans Clustering and Word Embedding), which is adept at generating realistic synthetic tabular data where attributes are collections of semantically and contextually coherent words. CTGKrEW is trained and evaluated using a dataset from Upwork, a realworld freelancing platform. Comprehensive experiments were conducted to analyze the variability, contextual similarity, frequency distribution, and associativity of the generated data, along with testing the framework's system feasibility. CTGKrEW also takes around 99\% less CPU time and 33\% less memory footprints than the conventional approach. Furthermore, we developed KrEW, a web application to facilitate the generation of realistic data containing skill-related information. This application, available at