Do speakers of different languages talk differently about what they see? Behavioural and cognitive studies report cultural effects on perception; however, these are mostly limited in scope and hard to replicate. In this work, we conduct the first large-scale empirical study of cross-lingual variation in image descriptions. Using a multimodal dataset with 31 languages and images from diverse locations, we develop a method to accurately identify entities mentioned in captions and present in the images, then measure how they vary across languages. Our analysis reveals that pairs of languages that are geographically or genetically closer tend to mention the same entities more frequently. We also identify entity categories whose saliency is universally high (such as animate beings), low (clothing accessories) or displaying high variance across languages (landscape). In a case study, we measure the differences in a specific language pair (e.g., Japanese mentions clothing far more frequently than English). Furthermore, our method corroborates previous small-scale studies, including 1) Rosch et al. (1976)'s theory of basic-level categories, demonstrating a preference for entities that are neither too generic nor too specific, and 2) Miyamoto et al. (2006)'s hypothesis that environments afford patterns of perception, such as entity counts. Overall, our work reveals the presence of both universal and culture-specific patterns in entity mentions.