Large language models (LLMs) executing tasks through instruction-based prompts often face challenges stemming from distribution differences between user instructions and training instructions. This leads to distractions and biases, especially when dealing with inconsistent dynamic labels. In this paper, we introduces a novel bias mitigation method, CRISPR, designed to alleviate instruction-label biases in LLMs. CRISPR utilizes attribution methods to identify bias neurons influencing biased outputs and employs pruning to eliminate the bias neurons. Experimental results demonstrate the method's effectiveness in mitigating biases in instruction-based prompting, enhancing language model performance on social bias benchmarks without compromising pre-existing knowledge. CRISPR proves highly practical, model-agnostic, offering flexibility in adapting to evolving social biases.