representations.To this end, we propose a novel and directly Coordinated VisionLanguage Retrieval method (dubbed CoVLR), which aims to study and alleviate the desynchrony problem between the cross-modal alignment and single-modal cluster-preserving tasks. CoVLR addresses this challenge by developing an effective meta-optimization based strategy, in which the cross-modal consistency objective and the intra-modal relation preserving objective are acted as the meta-train and meta-test tasks, thereby CoVLR encourages both tasks to be optimized in a coordinated way. Consequently, we can simultaneously insure cross-modal consistency and intra-modal structure. Experiments on different datasets validate CoVLR can improve single-modal retrieval accuracy whilst preserving crossmodal retrieval capacity compared with the baselines.
Current vision-language retrieval aims to perform cross-modal instance search, in which the core idea is to learn the consistent visionlanguage representations. Although the performance of cross-modal retrieval has greatly improved with the development of deep models, we unfortunately find that traditional hard consistency may destroy the original relationships among single-modal instances, leading the performance degradation for single-modal retrieval. To address this challenge, in this paper, we experimentally observe that the vision-language divergence may cause the existence of strong and weak modalities, and the hard cross-modal consistency cannot guarantee that strong modal instances' relationships are not affected by weak modality, resulting in the strong modal instances' relationships perturbed despite learned consistent