COVID-19 is a novel coronavirus that was emerged in December 2019 within Wuhan, China. As the crisis of its serious increasing dynamic outbreak in all parts of the globe, the forecast maps and analysis of confirmed cases (CS) becomes a vital great changeling task. In this study, a new forecasting model is presented to analyze and forecast the CS of COVID-19 for the coming days based on the reported data since 22 Jan 2020. The proposed forecasting model, named ISACL-MFNN, integrates an improved interior search algorithm (ISA) based on chaotic learning (CL) strategy into a multi-layer feed-forward neural network (MFNN). The ISACL incorporates the CL strategy to enhance the performance of ISA and avoid the trapping in the local optima. By this methodology, it is intended to train the neural network by tuning its parameters to optimal values and thus achieving high-accuracy level regarding forecasted results. The ISACL-MFNN model is investigated on the official data of the COVID-19 reported by the World Health Organization (WHO) to analyze the confirmed cases for the upcoming days. The performance regarding the proposed forecasting model is validated and assessed by introducing some indices including the mean absolute error (MAE), root mean square error (RMSE) and mean absolute percentage error (MAPE) and the comparisons with other optimization algorithms are presented. The proposed model is investigated in the most affected countries (i.e., USA, Italy, and Spain). The experimental simulations illustrate that the proposed ISACL-MFNN provides promising performance rather than the other algorithms while forecasting task for the candidate countries.