In this paper, we explore a quantitative approach to querying inconsistent description logic knowledge bases. We consider weighted knowledge bases in which both axioms and assertions have (possibly infinite) weights, which are used to assign a cost to each interpretation based upon the axioms and assertions it violates. Two notions of certain and possible answer are defined by either considering interpretations whose cost does not exceed a given bound or restricting attention to optimal-cost interpretations. Our main contribution is a comprehensive analysis of the combined and data complexity of bounded cost satisfiability and certain and possible answer recognition, for description logics between ELbot and ALCO.