Electroencephalography-based eye tracking (EEG-ET) leverages eye movement artifacts in EEG signals as an alternative to camera-based tracking. While EEG-ET offers advantages such as robustness in low-light conditions and better integration with brain-computer interfaces, its development lags behind traditional methods, particularly in consumer-grade settings. To support research in this area, we present a dataset comprising simultaneous EEG and eye-tracking recordings from 113 participants across 116 sessions, amounting to 11 hours and 45 minutes of recordings. Data was collected using a consumer-grade EEG headset and webcam-based eye tracking, capturing eye movements under four experimental paradigms with varying complexity. The dataset enables the evaluation of EEG-ET methods across different gaze conditions and serves as a benchmark for assessing feasibility with affordable hardware. Data preprocessing includes handling of missing values and filtering to enhance usability. In addition to the dataset, code for data preprocessing and analysis is available to support reproducibility and further research.