We tackle the extension to the vector-valued case of consistency results for Stepwise Uncertainty Reduction sequential experimental design strategies established in [Bect et al., A supermartingale approach to Gaussian process based sequential design of experiments, Bernoulli 25, 2019]. This lead us in the first place to clarify, assuming a compact index set, how the connection between continuous Gaussian processes and Gaussian measures on the Banach space of continuous functions carries over to vector-valued settings. From there, a number of concepts and properties from the aforementioned paper can be readily extended. However, vector-valued settings do complicate things for some results, mainly due to the lack of continuity for the pseudo-inverse mapping that affects the conditional mean and covariance function given finitely many pointwise observations. We apply obtained results to the Integrated Bernoulli Variance and the Expected Measure Variance uncertainty functionals employed in [Fossum et al., Learning excursion sets of vector-valued Gaussian random fields for autonomous ocean sampling, The Annals of Applied Statistics 15, 2021] for the estimation for excursion sets of vector-valued functions.