Convolutional neural networks (CNNs) for time series classification (TSC) are being increasingly used in applications ranging from quality prediction to medical diagnosis. The black box nature of these models makes understanding their prediction process difficult. This issue is crucial because CNNs are prone to learning shortcuts and biases, compromising their robustness and alignment with human expectations. To assess whether such mechanisms are being used and the associated risk, it is essential to provide model explanations that reflect the inner workings of the model. Concept Extraction (CE) methods offer such explanations, but have mostly been developed for the image domain so far, leaving a gap in the time series domain. In this work, we present a CE and localization method tailored to the time series domain, based on the ideas of CE methods for images. We propose the novel method ECLAD-ts, which provides post-hoc global explanations based on how the models encode subsets of the input at different levels of abstraction. For this, concepts are produced by clustering timestep-wise aggregations of CNN activation maps, and their importance is computed based on their impact on the prediction process. We evaluate our method on synthetic and natural datasets. Furthermore, we assess the advantages and limitations of CE in time series through empirical results. Our results show that ECLAD-ts effectively explains models by leveraging their internal representations, providing useful insights about their prediction process.