The generalized minimax concave (GMC) penalty is a nonconvex sparse regularizer which can preserve the overall-convexity of the sparse least squares problem. In this paper, we study the solution path of a special but important instance of the GMC model termed the scaled GMC (sGMC) model. We show that despite the nonconvexity of the regularizer, there exists a solution path of the sGMC model which is piecewise linear as a function of the tuning parameter, and we propose an efficient algorithm for computing a solution path of this type. Our algorithm is an extension of the well-known least angle regression (LARS) algorithm for LASSO, hence we term the proposed algorithm LARS-sGMC. Under suitable conditions, we provide a proof of the correctness and finite termination of the proposed LARS-sGMC algorithm. This article also serves as an appendix for the short paper titled ``COMPUTING AN ENTIRE SOLUTION PATH OF A NONCONVEXLY REGULARIZED CONVEX SPARSE MODEL", and addresses proofs and technical derivations that were omitted in the original paper due to space limitation.