A fitness landscape is a genetic space -- with two genotypes adjacent if they differ in a single locus -- and a fitness function. Evolutionary dynamics produce a flow on this landscape from lower fitness to higher; reaching equilibrium only if a local fitness peak is found. I use computational complexity to question the common assumption that evolution on static fitness landscapes can quickly reach a local fitness peak. I do this by showing that the popular NK model of rugged fitness landscapes is PLS-complete for K >= 2; the reduction from Weighted 2SAT is a bijection on adaptive walks, so there are NK fitness landscapes where every adaptive path from some vertices is of exponential length. Alternatively -- under the standard complexity theoretic assumption that there are problems in PLS not solvable in polynomial time -- this means that there are no evolutionary dynamics (known, or to be discovered, and not necessarily following adaptive paths) that can converge to a local fitness peak on all NK landscapes with K = 2. Applying results from the analysis of simplex algorithms, I show that there exist single-peaked landscapes with no reciprocal sign epistasis where the expected length of an adaptive path following strong selection weak mutation dynamics is $e^{O(n^{1/3})}$ even though an adaptive path to the optimum of length less than n is available from every vertex. The technical results are written to be accessible to mathematical biologists without a computer science background, and the biological literature is summarized for the convenience of non-biologists with the aim to open a constructive dialogue between the two disciplines.