This study presents a comparison between the Sprint Z3 and A3 head parallel kinematics machines, distinguished by their joint sequence. The analysis focuses on performance attributes critical for precision machining specifically, parasitic motion, workspace capability, stiffness performance over the independent and parasitic spaces, and condition number distribution. Although these machines are extensively utilized in precision machining for the aerospace and automotive industries, a definitive superior choice has not been identified for machining large components. Moreover, the distribution of stiffness across the configuration of parasitic space has not previously been addressed for either mechanism. This research reveals that despite identical parameters used and exhibiting similar parasitic motions, the Sprint Z3 demonstrates superior stiffness, workspace volume, and condition number distribution. This performance advantage is attributed to variations in joint and link sequence, which enhance deflection resilience, crucial for manufacturing large-scale components. This also results in a higher condition number and a larger workspace. The result highlights the importance of design architecture in the efficacy of parallel kinematics machines and suggest