This study conducted a comprehensive performance evaluation on YOLO11 and YOLOv8, the latest in the "You Only Look Once" (YOLO) series, focusing on their instance segmentation capabilities for immature green apples in orchard environments. YOLO11n-seg achieved the highest mask precision across all categories with a notable score of 0.831, highlighting its effectiveness in fruit detection. YOLO11m-seg and YOLO11l-seg excelled in non-occluded and occluded fruitlet segmentation with scores of 0.851 and 0.829, respectively. Additionally, YOLO11x-seg led in mask recall for all categories, achieving a score of 0.815, with YOLO11m-seg performing best for non-occluded immature green fruitlets at 0.858 and YOLOv8x-seg leading the occluded category with 0.800. In terms of mean average precision at a 50\% intersection over union (mAP@50), YOLO11m-seg consistently outperformed, registering the highest scores for both box and mask segmentation, at 0.876 and 0.860 for the "All" class and 0.908 and 0.909 for non-occluded immature fruitlets, respectively. YOLO11l-seg and YOLOv8l-seg shared the top box mAP@50 for occluded immature fruitlets at 0.847, while YOLO11m-seg achieved the highest mask mAP@50 of 0.810. Despite the advancements in YOLO11, YOLOv8n surpassed its counterparts in image processing speed, with an impressive inference speed of 3.3 milliseconds, compared to the fastest YOLO11 series model at 4.8 milliseconds, underscoring its suitability for real-time agricultural applications related to complex green fruit environments.