Network data has attracted tremendous attention in recent years, and most conventional networks focus on pairwise interactions between two vertices. However, real-life network data may display more complex structures, and multi-way interactions among vertices arise naturally. In this article, we propose a novel method for detecting community structure in general hypergraph networks, uniform or non-uniform. The proposed method introduces a null vertex to augment a non-uniform hypergraph into a uniform multi-hypergraph, and then embeds the multi-hypergraph in a low-dimensional vector space such that vertices within the same community are close to each other. The resultant optimization task can be efficiently tackled by an alternative updating scheme. The asymptotic consistencies of the proposed method are established in terms of both community detection and hypergraph estimation, which are also supported by numerical experiments on some synthetic and real-life hypergraph networks.