Adversarial attacks have verified the existence of the vulnerability of neural networks. By adding small perturbations to a benign example, adversarial attacks successfully generate adversarial examples that lead misclassification of deep learning models. More importantly, an adversarial example generated from a specific model can also deceive other models without modification. We call this phenomenon ``transferability". Here, we analyze the relationship between transferability and input transformation with additive noise by mathematically proving that the modified optimization can produce more transferable adversarial examples.