This letter studies distributed Bayesian learning in a setting encompassing a central server and multiple workers by focusing on the problem of mitigating the impact of stragglers. The standard one-shot, or embarrassingly parallel, Bayesian learning protocol known as consensus Monte Carlo (CMC) is generalized by proposing two straggler-resilient solutions based on grouping and coding. The proposed methods, referred to as Group-based CMC (G-CMC) and Coded CMC (C-CMC), leverage redundant computing at the workers in order to enable the estimation of global posterior samples at the server based on partial outputs from the workers. Simulation results show that C-CMC may outperform G-GCMC for a small number of workers, while G-CMC is generally preferable for a larger number of workers.