In recent years, there has been a growing interest in employing intelligent agents in writing. Previous work emphasizes the evaluation of the quality of end product-whether it was coherent and polished, overlooking the journey that led to the product, which is an invaluable dimension of the creative process. To understand how to recognize human efforts in co-writing with intelligent writing systems, we adapt Flower and Hayes' cognitive process theory of writing and propose CoCo Matrix, a two-dimensional taxonomy of entropy and information gain, to depict the new human-agent co-writing model. We define four quadrants and situate thirty-four published systems within the taxonomy. Our research found that low entropy and high information gain systems are under-explored, yet offer promising future directions in writing tasks that benefit from the agent's divergent planning and the human's focused translation. CoCo Matrix, not only categorizes different writing systems but also deepens our understanding of the cognitive processes in human-agent co-writing. By analyzing minimal changes in the writing process, CoCo Matrix serves as a proxy for the writer's mental model, allowing writers to reflect on their contributions. This reflection is facilitated through the measured metrics of information gain and entropy, which provide insights irrespective of the writing system used.