A comparison was made of vectors derived by using ordinary co-occurrence statistics from large text corpora and of vectors derived by measuring the inter-word distances in dictionary definitions. The precision of word sense disambiguation by using co-occurrence vectors from the 1987 Wall Street Journal (20M total words) was higher than that by using distance vectors from the Collins English Dictionary (60K head words + 1.6M definition words). However, other experimental results suggest that distance vectors contain some different semantic information from co-occurrence vectors.