Despite the huge recent breakthroughs in neural networks (NNs) for artificial intelligence (specifically deep convolutional networks) such NNs do not achieve human-level performance: they can be hacked by images that would fool no human and lack `common sense'. It has been argued that a basis of human-level intelligence is mankind's ability to perform relational reasoning: the comparison of different objects, measuring similarity, grasping of relations between objects and the converse, figuring out the odd one out in a set of objects. Mankind can even do this with objects they have never seen before. Here we show how ClusterFlow, a semi-supervised hierarchical clustering framework can operate on trained NNs utilising the rich multi-dimensional class and feature data found at the pre-SoftMax layer to build a hyperspacial map of classes/features and this adds more human-like functionality to modern deep convolutional neural networks. We demonstrate this with 3 tasks. 1. the statistical learning based `mistakes' made by infants when attending to images of cats and dogs. 2. improving both the resilience to hacking images and the accurate measure of certainty in deep-NNs. 3. Relational reasoning over sets of images, including those not known to the NN nor seen before. We also demonstrate that ClusterFlow can work on non-NN data and deal with missing data by testing it on a Chemistry dataset. This work suggests that modern deep NNs can be made more human-like without re-training of the NNs. As it is known that some methods used in deep and convolutional NNs are not biologically plausible or perhaps even the best approach: the ClusterFlow framework can sit on top of any NN and will be a useful tool to add as NNs are improved in this regard.