We propose a novel graph pooling operation using cliques as the unit pool. As this approach is purely topological, rather than featural, it is more readily interpretable, a better analogue to image coarsening than filtering or pruning techniques, and entirely nonparametric. The operation is implemented within graph convolution network (GCN) and GraphSAGE architectures and tested against standard graph classification benchmarks. In addition, we explore the backwards compatibility of the pooling to regular graphs, demonstrating competitive performance when replacing two-by-two pooling in standard convolutional neural networks (CNNs) with our mechanism.