This paper investigates the problem of class-incremental object detection for agricultural applications where a model needs to learn new plant species and diseases incrementally without forgetting the previously learned ones. We adapt two public datasets to include new categories over time, simulating a more realistic and dynamic scenario. We then compare three class-incremental learning methods that leverage different forms of knowledge distillation to mitigate catastrophic forgetting. Our experiments show that all three methods suffer from catastrophic forgetting, but the recent Dynamic Y-KD approach, which additionally uses a dynamic architecture that grows new branches to learn new tasks, outperforms ILOD and Faster-ILOD in most scenarios both on new and old classes. These results highlight the challenges and opportunities of continual object detection for agricultural applications. In particular, the large intra-class and small inter-class variability that is typical of plant images exacerbate the difficulty of learning new categories without interfering with previous knowledge. We publicly release our code to encourage future work.