Since its inception, the choice modelling field has been dominated by theory-driven models. The recent emergence and growing popularity of machine learning models offer an alternative data-driven approach. Machine learning models, techniques and practices could help overcome problems and limitations of the current theory-driven modelling paradigm, e.g. relating to the ad-hocness in search for the optimal model specification, and theory-driven choice model's inability to work with text and image data. However, despite the potential value of machine learning to improve choice modelling practices, the choice modelling field has been somewhat hesitant to embrace machine learning. The aim of this paper is to facilitate (further) integration of machine learning in the choice modelling field. To achieve this objective, we make the case that (further) integration of machine learning in the choice modelling field is beneficial for the choice modelling field, and, we shed light on where the benefits of further integration can be found. Specifically, we take the following approach. First, we clarify the similarities and differences between the two modelling paradigms. Second, we provide a literature overview on the use of machine learning for choice modelling. Third, we reinforce the strengths of the current theory-driven modelling paradigm and compare this with the machine learning modelling paradigm, Fourth, we identify opportunities for embracing machine learning for choice modelling, while recognising the strengths of the current theory-driven paradigm. Finally, we put forward a vision on the future relationship between the theory-driven choice models and machine learning.