The purpose of this paper is to introduced a new clustering methodology. This paper is divided into three parts. In the first part we have developed the axiomatic theory for the average silhouette width (ASW) index. There are different ways to investigate the quality and characteristics of clustering methods such as validation indices using simulations and real data experiments, model-based theory, and non-model-based theory known as the axiomatic theory. In this work we have not only taken the empirical approach of validation of clustering results through simulations, but also focus on the development of the axiomatic theory. In the second part we have presented a novel clustering methodology based on the optimization of the ASW index. We have considered the problem of estimation of number of clusters and finding clustering against this number simultaneously. Two algorithms are proposed. The proposed algorithms are evaluated against several partitioning and hierarchical clustering methods. An intensive empirical comparison of the different distance metrics on the various clustering methods is conducted. In the third part we have considered two application domains\textemdash novel single cell RNA sequencing datasets and rainfall data to cluster weather stations.