In this paper, a delay-angle information spoofing (DAIS) strategy is proposed for location-privacy enhancement. By shifting the location-relevant delays and angles without the aid of channel state information (CSI) at the transmitter, the eavesdropper is obfuscated by a physical location that is distinct from the true one. A precoder is designed to preserve location-privacy while the legitimate localizer can remove the obfuscation with the securely shared information. Then, a lower bound on the localization error is derived via the analysis of the geometric mismatch caused by DAIS, validating the enhanced location-privacy. The statistical hardness for the estimation of the shared information is also investigated to assess the robustness to the potential leakage of the designed precoder structure. Numerical comparisons show that the proposed DAIS scheme results in more than 15 dB performance degradation for the illegitimate localizer at high signal-to-noise ratios, which is comparable to a recently proposed CSI-free location-privacy enhancement strategy and is less sensitive to the precoder structure leakage than the prior approach.