In wireless communications, estimation of channels in OFDM systems spans frequency and time, which relies on sparse collections of pilot data, posing an ill-posed inverse problem. Moreover, deep learning estimators require large amounts of training data, computational resources, and true channels to produce accurate channel estimates, which are not realistic. To address this, a convolutional neural tangent kernel (CNTK) is derived from an infinitely wide convolutional network whose training dynamics can be expressed by a closed-form equation. This CNTK is used to impute the target matrix and estimate the missing channel response using only the known values available at pilot locations. This is a promising solution for channel estimation that does not require a large training set. Numerical results on realistic channel datasets demonstrate that our strategy accurately estimates the channels without a large dataset and significantly outperforms deep learning methods in terms of speed, accuracy, and computational resources.